Statistical Analysis of Tensor Fields
نویسندگان
چکیده
In this paper, we propose a Riemannian framework for statistical analysis of tensor fields. Existing approaches to this problem have been mainly voxel-based that overlook the correlation between tensors at different voxels. In our approach, the tensor fields are considered as points in a high-dimensional Riemannian product space and accordingly, we extend Principal Geodesic Analysis (PGA) to the product space. This provides us with a principled method for linearizing the problem, and coupled with the usual log-exp maps that relate points on manifold to tangent vectors, the global correlation of the tensor field can be captured using Principal Component Analysis in a tangent space. Using the proposed method, the modes of variation of tensor fields can be efficiently determined, and dimension reduction of the data is also easily implemented. Experimental results on characterizing the variation of a large set of tensor fields are presented in the paper, and results on classifying tensor fields using the proposed method are also reported. These preliminary experimental results demonstrate the advantages of our method over the voxel-based approach.
منابع مشابه
Symmetric curvature tensor
Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...
متن کاملVisualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature
We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we...
متن کاملGeometrical Deformation Analysis of Gotvand-Olya Dam Using Permanent Geodetic Monitoring Network Observations
In this paper, two-dimensional deformation analysis of the Gotvand-Olya dam is done using daily, monthly, seasonal and annual displacement vectors derived from permanent observations of the dam geodetic monitoring network. The strain tensor and its invariant parameters like dilatation and maximum shear are computed as well. Nonlinear finite element interpolation based on C1 Cubic Bezier int...
متن کاملMax - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Information Geometry and Sufficient Statistics
Information geometry provides a geometric approach to families of statistical models. The key geometric structures are the Fisher quadratic form and the Amari-Chentsov tensor. In statistics, the notion of sufficient statistic expresses the criterion for passing from one model to another without loss of information. This leads to the question how the geometric structures behave under such suffic...
متن کاملA Visual Approach to Analysis of Stress Tensor Fields
We present a visual approach for the exploration of stress tensor fields. Therefore, we introduce the idea of multiple linked views to tensor visualization. In contrast to common tensor visualization methods that only provide a single view to the tensor field, we pursue the idea of providing various perspectives onto the data in attribute and object space. Especially in the context of stress te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 1 شماره
صفحات -
تاریخ انتشار 2010